Package Jama
Class EigenvalueDecomposition
java.lang.Object
Jama.EigenvalueDecomposition
- All Implemented Interfaces:
java.io.Serializable
public class EigenvalueDecomposition
extends java.lang.Object
implements java.io.Serializable
Eigenvalues and eigenvectors of a real matrix.
If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal and the eigenvector matrix V is orthogonal. I.e. A = V.times(D.times(V.transpose())) and V.times(V.transpose()) equals the identity matrix.
If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The columns of V represent the eigenvectors in the sense that A*V = V*D, i.e. A.times(V) equals V.times(D). The matrix V may be badly conditioned, or even singular, so the validity of the equation A = V*D*inverse(V) depends upon V.cond().
- See Also:
- Serialized Form
-
Constructor Summary
Constructors Constructor Description EigenvalueDecomposition(Matrix Arg)
Check for symmetry, then construct the eigenvalue decomposition -
Method Summary
Modifier and Type Method Description Matrix
getD()
Return the block diagonal eigenvalue matrixdouble[]
getImagEigenvalues()
Return the imaginary parts of the eigenvaluesdouble[]
getRealEigenvalues()
Return the real parts of the eigenvaluesMatrix
getV()
Return the eigenvector matrix
-
Constructor Details
-
EigenvalueDecomposition
Check for symmetry, then construct the eigenvalue decomposition- Parameters:
A
- Square matrix
-
-
Method Details
-
getV
Return the eigenvector matrix- Returns:
- V
-
getRealEigenvalues
public double[] getRealEigenvalues()Return the real parts of the eigenvalues- Returns:
- real(diag(D))
-
getImagEigenvalues
public double[] getImagEigenvalues()Return the imaginary parts of the eigenvalues- Returns:
- imag(diag(D))
-
getD
Return the block diagonal eigenvalue matrix- Returns:
- D
-