Package netlib.quadpack
Class Dqage
java.lang.Object
netlib.quadpack.Dqage
public class Dqage
extends java.lang.Object
(Adaptive) Computation of a Definite Integral.
The static method dqage(...) performs an adapive integration.
The static method getIntegrationRule(...) is a factory method for Dqk-objects.
Produced by f2java. f2java is part of the Fortran- -to-Java project at the University of Tennessee Netlib numerical software repository. Original authorship for the BLAS and LAPACK numerical routines may be found in the Fortran source, available at http://www.netlib.org. Fortran input file: dqage.f f2java version: 0.8.1 // c***begin prologue dqage // c***date written 800101 (yymmdd) // c***revision date 830518 (yymmdd) // c***category no. h2a1a1 // c***keywords automatic integrator, general-purpose, // c integrand examinator, globally adaptive, // c gauss-kronrod // c***author piessens,robert,appl. math. & progr. div. - k.u.leuven // c de doncker,elise,appl. math. & progr. div. - k.u.leuven // c***purpose the routine calculates an approximation result to a given // c definite integral i = integral of f over (a,b), // c hopefully satisfying following claim for accuracy // c abs(i-reslt).le.max(epsabs,epsrel*abs(i)). // c***description // c // c computation of a definite integral // c standard fortran subroutine // c double precision version // c // c parameters // c on entry // c f - double precision // c function subprogram defining the integrand // c function f(x). the actual name for f needs to be // c declared e x t e r n a l in the driver program. // c // c a - double precision // c lower limit of integration // c // c b - double precision // c upper limit of integration // c // c epsabs - double precision // c absolute accuracy requested // c epsrel - double precision // c relative accuracy requested // c if epsabs.le.0 // c and epsrel.lt.max(50*rel.mach.acc.,0.5d-28), // c the routine will end with ier = 6. // c // c key - integer // c key for choice of local integration rule // c a gauss-kronrod pair is used with // c 7 - 15 points if key.lt.2, // c 10 - 21 points if key = 2, // c 15 - 31 points if key = 3, // c 20 - 41 points if key = 4, // c 25 - 51 points if key = 5, // c 30 - 61 points if key.gt.5. // c // c limit - integer // c gives an upperbound on the number of subintervals // c in the partition of (a,b), limit.ge.1. // c // c on return // c result - double precision // c approximation to the integral // c // c abserr - double precision // c estimate of the modulus of the absolute error, // c which should equal or exceed abs(i-result) // c // c neval - integer // c number of integrand evaluations // c // c ier - integer // c ier = 0 normal and reliable termination of the // c routine. it is assumed that the requested // c accuracy has been achieved. // c ier.gt.0 abnormal termination of the routine // c the estimates for result and error are // c less reliable. it is assumed that the // c requested accuracy has not been achieved. // c error messages // c ier = 1 maximum number of subdivisions allowed // c has been achieved. one can allow more // c subdivisions by increasing the value // c of limit. // c however, if this yields no improvement it // c is rather advised to analyze the integrand // c in order to determine the integration // c difficulties. if the position of a local // c difficulty can be determined(e.g. // c singularity, discontinuity within the // c interval) one will probably gain from // c splitting up the interval at this point // c and calling the integrator on the // c subranges. if possible, an appropriate // c special-purpose integrator should be used // c which is designed for handling the type of // c difficulty involved. // c = 2 the occurrence of roundoff error is // c detected, which prevents the requested // c tolerance from being achieved. // c = 3 extremely bad integrand behaviour occurs // c at some points of the integration // c interval. // c = 6 the input is invalid, because // c (epsabs.le.0 and // c epsrel.lt.max(50*rel.mach.acc.,0.5d-28), // c result, abserr, neval, last, rlist(1) , // c elist(1) and iord(1) are set to zero. // c alist(1) and blist(1) are set to a and b // c respectively. // c // c alist - double precision // c vector of dimension at least limit, the first // c last elements of which are the left // c end points of the subintervals in the partition // c of the given integration range (a,b) // c // c blist - double precision // c vector of dimension at least limit, the first // c last elements of which are the right // c end points of the subintervals in the partition // c of the given integration range (a,b) // c // c rlist - double precision // c vector of dimension at least limit, the first // c last elements of which are the // c integral approximations on the subintervals // c // c elist - double precision // c vector of dimension at least limit, the first // c last elements of which are the moduli of the // c absolute error estimates on the subintervals // c // c iord - integer // c vector of dimension at least limit, the first k // c elements of which are pointers to the // c error estimates over the subintervals, // c such that elist(iord(1)), ..., // c elist(iord(k)) form a decreasing sequence, // c with k = last if last.le.(limit/2+2), and // c k = limit+1-last otherwise // c // c last - integer // c number of subintervals actually produced in the // c subdivision process // c // c***references (none) // c***routines called d1mach,dqk15,dqk21,dqk31, // c dqk41,dqk51,dqk61,dqpsrt // c***end prologue dqage // c // c // c // c // c list of major variables // c ----------------------- // c // c alist - list of left end points of all subintervals // c considered up to now // c blist - list of right end points of all subintervals // c considered up to now // c rlist(i) - approximation to the integral over // c (alist(i),blist(i)) // c elist(i) - error estimate applying to rlist(i) // c maxerr - pointer to the interval with largest // c error estimate // c errmax - elist(maxerr) // c area - sum of the integrals over the subintervals // c errsum - sum of the errors over the subintervals // c errbnd - requested accuracy max(epsabs,epsrel* // c abs(result)) // c *****1 - variable for the left subinterval // c *****2 - variable for the right subinterval // c last - index for subdivision // c // c // c machine dependent constants // c --------------------------- // c // c epmach is the largest relative spacing. // c uflow is the smallest positive magnitude. // c
-
Method Summary
Modifier and Type Method Description static void
dqage(UnivariateDoubleFunction fun, double a, double b, double epsabs, double epsrel, int key, int limit, doubleW result, doubleW abserr, intW neval, intW ier, double[] alist, int _alist_offset, double[] blist, int _blist_offset, double[] rlist, int _rlist_offset, double[] elist, int _elist_offset, int[] iord, int _iord_offset, intW last)
static int
getEvaluationsPerInterval(int key)
Anzahl der pro Intervall benötigten Funktionsaufrufe.static Dqk
getIntegrationRule(int key)
-
Method Details
-
dqage
public static void dqage(UnivariateDoubleFunction fun, double a, double b, double epsabs, double epsrel, int key, int limit, doubleW result, doubleW abserr, intW neval, intW ier, double[] alist, int _alist_offset, double[] blist, int _blist_offset, double[] rlist, int _rlist_offset, double[] elist, int _elist_offset, int[] iord, int _iord_offset, intW last) throws FunctionValue.FunctionEvaluationException -
getEvaluationsPerInterval
public static int getEvaluationsPerInterval(int key)Anzahl der pro Intervall benötigten Funktionsaufrufe. -
getIntegrationRule
-